Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982396

RESUMO

Vitamin D plays an important role in numerous cellular functions due to the ability to bind the Vitamin D receptor (VDR), which is present in different tissues. Several human diseases depend on low vitamin D3 (human isoform) serum level, and supplementation is necessary. However, vitamin D3 has poor bioavailability, and several strategies are tested to increase its absorption. In this work, the complexation of vitamin D3 in Cyclodextrin-based nanosponge (CD-NS, in particular, ßNS-CDI 1:4) was carried out to study the possible enhancement of bioactivity. The ßNS-CDI 1:4 was synthesized by mechanochemistry, and the complex was confirmed using FTIR-ATR and TGA. TGA demonstrated higher thermostability of the complexed form. Subsequently, in vitro experiments were performed to evaluate the biological activity of Vitamin D3 complexed in the nanosponges on intestinal cells and assess its bioavailability without cytotoxic effect. The Vitamin D3 complexes enhance cellular activity at the intestinal level and improve its bioavailability. In conclusion, this study demonstrates for the first time the ability of CD-NS complexes to improve the chemical and biological function of Vitamin D3.


Assuntos
Antineoplásicos , Ciclodextrinas , Nanoestruturas , Humanos , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Vitamina D/farmacologia , Nanoestruturas/química , Colecalciferol/farmacologia , Receptores de Calcitriol
2.
Bioengineering (Basel) ; 9(12)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36550971

RESUMO

This study tested the anticoagulant effect of cyclodextrin (CD) hyper-branched-based polymers (HBCD-Pols). These polymers were synthesized and tested for their coagulant characteristics in vitro and in vivo. Due to their polymeric structure and anionic nature, the polymers can chelate Ca2+, reducing the free quantity in blood. HBCD-Pol increased the blood clotting time, PT, and aPTT 3.5 times over the control, showing a better effect than even ethylenediaminetetraacetic acid (EDTA), as occured with recalcification time as well. A titration of HBCD-Pol and EDTA showed exciting differences in the ability to complex Ca2+ between both materials. Before executing in vivo studies, a hemocompatibility study was carried out with less than 5% red blood cell hemolysis. The fibrinogen consumption and bleeding time were analyzed in vivo. The fibrinogen was considerably decreased in the presence of HBCD-Pol in a higher grade than EDTA, while the bleeding time was longer with HBCD-Pols. The results demonstrate that the anticoagulant effect of this HBCD-Pol opens novel therapy possibilities due to the possible transport of drugs in this carrier. This would give combinatorial effects and a potential novel anticoagulant therapy with HBCD-Pol per se.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...